Blog Archives

A new probiotic modulates gut microbiota against hepatocellular carcinoma

24th August 2016

Over the last years the beneficial effects of the human intestinal microbiota on various health markers have been displayed, such as inflammation, immune response, metabolic function and weight. The importance of these symbiotic bacteria of ours has been proved. You can see these other posts related with our microbiota: “The good clostridia avoid us from allergies“, “Gut bacteria controlling what we eat” or “Good bacteria of breast milk

At the same time it has been seen that probiotics can be a good solution for many diseases with affected gut microbiota. Indeed, the beneficial role of probiotics to reduce gastrointestinal inflammation and prevent colorectal cancer has been proven.

However, recently it has been found that probiotics may have beneficial effects in other parts of the body beyond the gastrointestinal tract, particularly with immunomodulatory effects on an hepatocellular carcinoma (HCC). In this way, researchers at the University of Hong Kong, along with other from University of Eastern Finland, have published a study (Li et al, PNAS, 2016), where they have seen reductions of 40% in weight and size of HCC liver tumours in mice which were administered with a new mixture of probiotics, “Prohep.”

Hepatocellular carcinoma (HCC) is the most common type of liver cancer is the 2nd most deadly cancers, and it is quite abundant in areas with high rates of hepatitis. In addition, sorafenib, the drug most widely used to reduce the proliferation of tumour, is very expensive. The cost of this multikinase inhibitor is €3400 for 112 tablets of 200 mg, the recommended treatment of four pills a day for a month. Instead, any treatment with probiotics that would proved to be effective and could replace this drug would be much cheaper.

The new probiotics mix Prohep consists of several bacteria: Lactobacillus rhamnosus GG (LGG), Escherichia coli Nissle 1917 (ECN) and the whole inactivated by heat VSL#3 (1: 1: 1) containing Streptococcus thermophilus, Bifidobacterium breve, Bf. longum, Bf. infantis, Lb. acidophilus, Lb. plantarum, Lb. paracasei and Lb. delbrueckii.

In the mentioned work, Li et al. (2016) fed mice with Prohep for a week before inoculating them with a liver tumour, and observed a 40% reduction in tumour weight and size in comparison to control animals. As shown in Figure 1, the effect was significant at 35 days, and also for those who were given the Prohep the same day of tumour inoculation. Obviously, the effect of tumour reduction was much more evident when the antitumour compound Cisplatin was administered.

These researchers saw that tumour reduction was due to the inhibition of angiogenesis. This is the process that generates new blood vessels from existing ones, something essential for tumour growth. In relation to the tumour reduction, high levels of GLUT-1 + hypoxic were found. That meant that there was hypoxia caused by the lower blood flow to the tumour, since this was 54% lower in comparison to controls.

 

Fig 1 Li-Fig1B tumor size - days tumor

Figure 1. Change in tumour size. ProPre: administration of Prohep one week before tumour inoculation; ProTreat: administration of Prohep the same day of tumour inoculation; Cisplatin: administration of this antitumoral. (Fig 1B from Li et al, 2016).

 

These authors also determined that there was a smaller amount of pro-inflammatory angiogenic factor IL-17 and of Th17 cells of the immune system, cells also associated with cancer. The lower inflammation and angiogenesis could limit the tumour growth.

Moreover, these researchers established that the beneficial effects of probiotics administration were associated with the abundance of beneficial bacteria in the mice gut microbiota, analysed by metagenomics. So, probiotics modulate microbiota, favouring some gut bacteria, which produce anti-inflammatory metabolites such as cytokine IL-10 and which suppress the Th17 cell differentiation.

 

Fig 2 gut microbiota Eye of Science

Figure 2. Bacteria of the human intestinal microbiota seen by scanning electron microscope (SEM) (coloured image of Eye of Science / Science Source)

 

Some of the bacteria identified by metagenomics in the microbiota of mice that were administered with Prohep were Prevotella and Oscillibacter. The first is a bacteroidal, gram-negative bacterium, which is abundant in the microbiota of rural African child with diets rich in carbohydrates. Oscillibacter is a gram-positive clostridial, known in humans as a producer of the neurotransmitter GABA. Both are an example of the importance of some clostridial and bacteroidals in the gut microbiota. In fact, they are majority there, and although they are not used as probiotics, are found increasingly more positive functions, such as avoiding allergies (see “The good clostridia avoid us from allergies“).

It is known that these bacteria produce anti-inflammatory metabolites and therefore they would be the main involved in regulating the activity of immune cells that cause tumour growth. The observed reduction of tumour in these experiments with mice would be the result of combined effect of these administered probiotic bacteria together with the microbiota itself favoured by them. We see a potential outline of these actions in Figure 3.

Fig 3 Sung fig 2

Figure 3. Simplified diagram of the possible mechanisms of gut bacteria influencing on the polarization of Th17 cells in the lamina propria of the intestinal mucosa. The microbiota bacteria activate dendritic cells, which secrete cytokines (IL-22, IL-23, IL-27). The bacteria can promote Th17 immunity inducing IL-23, which can be involved by means of TLR ligands signal or extracellular ATP or serum amyloid A (SAA). Meanwhile, some probiotic strains could inhibit the development of Th17 by means of the production of IL-12 and IL-27, in addition to promoting the growth and colonization of the bacteria that induce Th17 (Sung et al 2012, Fig. 2).

 

Although we know that the cancer progression is a very complex process and that in the tumour microenvironments there is an infiltration of many different types of immune system cells, such as T cells, neutrophils, killer cells, macrophages etc, the Th17 helper cell subpopulation appears to be prevailing in the tumour progression, and therefore these effects of probiotics and microbiota open good prospects.

It is still early to say whether these findings will contribute to the treatment of human liver cancer, and therefore research in humans is needed, in order to see if these probiotics could be used as such or in tandem with some drug, depending on the tumour stage and size. In any case, all this opens a new range of possibilities for research of the molecular mechanisms of the beneficial effects of probiotics beyond the intestinal tract.

 

Bibliography

El-Nezami H (2016 april 27) HKU develops novel probiotic mixture “Prohep” that may offer potential therapeutic effects on liver cancer. The University of Hong Kong (HKU) 27 Apr 2016

El-Nezamy H, Lee PY, Huang J, Sung YJ (2015) Method and compositions for treating cancer using probiotics. Patent WO 2015021936 A1

Li J, Sung CYJ, Lee N, Ni Y, Pihlajamäki J, Panagiotou G, El-Nezami H (2016) Probiotics modulated gut microbiota suppresses hepatocellular carcinoma growth in mice. PNAS E1306-E1315

Oelschlaeger TA (2010) Mechanisms of probiotic actions – A review. Int J Med Microbiol 300, 57-62

Packham C (2016) Probiotics dramatically modulate liver cancer growth in mice. Medical Press, Med Research 23 Feb 2016

Silgailis M (2016) Treating some cancers with probiotics in the future ? Probiotic Prohep. Lacto Bacto: Health, Microbes and More 23 Feb 2016

Sung CYJ, Lee NP, El-Nezami H (2012) Regulation of T helper by bacteria: an approach for the treatment of hepatocellular carcinoma. Int J Hepatology ID439024, doi:10.1155/2012/439024

UEF News and Events (2016) A novel probiotic mixture may offer potential therapeutic effects on hepatocellular carcinoma. University of Eastern Finland 1 Mar 2016

 

The giant panda is herbivore but has the gut microbiota of a carnivore

September 30th, 2015

The giant panda (Ailuropoda melanoleuca, literally Greek for “white and black cat feet”) is one of the most intriguing evolutionary mammal species. Despite its exclusively herbivorous diet, phylogenetically it is like a bear because it belongs to Ursids family, order Carnivores. Its diet is 99% bamboo and the other 1% is honey, eggs, fish, oranges, bananas, yams and leaves of shrubs.

It lives in a mountain area in central China, mainly in Sichuan province, and also in provinces of Shaanxi and Gansu. Due to the construction of farms, deforestation and other development, the panda has been driven out of the lowland where he lived. It is an endangered species that needs protection. There are about 300 individuals in captivity and 3000 in freedom. Although the numbers are increasing, it is still endangered, particularly due to its limited space (20,000 km2) and its very specific habitat (bamboo forests).

Fig0 panda bamboo

Thus, the giant panda has an almost exclusive diet of different species of bamboo, mainly the very fibrous leaves and stems, and buds in spring and summer. It is therefore a poor quality -digestive diet, with little protein and plenty of fibre and lignin content. They spend about 14 hours a day eating and can ingest about 12 kg of bamboo a day.

Most herbivores have modifications of the digestive tract that help them to retain the food in digestion process and contain microbial populations that allow them to eat exclusively plant materials, rich in complex polysaccharides such as cellulose and hemicellulose. These specializations may be compartmentalization of the stomach of ruminants and other typical non-ruminants (kangaroos, hamster, hippopotamus and some primates) or enlargement of the large intestine, characteristic of equines, some rodents and lagomorphs (rabbits and hares).

However, despite his exclusively herbivorous diet, surprisingly the giant panda has a typical carnivorous gastrointestinal tract, anatomically similar to dog, cat or raccoon, with a simple stomach, a degenerated caecum and a very short colon. The gastrointestinal tract of pandas is about 4 times the size of the body, such as other carnivores, whereas herbivores have about 10-20 times the size of the body, to efficiently digest large amounts of forage. With this, the panda intestinal transit time is very short, less than 12 hours. This severely limits the ability of potential fermentation of plant materials (Williams et al. 2013).

For these reasons, the digestion of bamboo for panda is very inefficient, despite their dependency. Pandas consume the equivalent of 6% of their body weight per day, with a 20% digestibility of dry matter of bamboo. Of this, 10% corresponds to the low protein content of bamboo, and the rest are polysaccharides, particularly with coefficients of digestion of 27% for hemicellulose and 8% for the pulp.

It seems as if the giant panda would have specialized in the use of a plant with high fibre content without having modified the digestive system, by means of an efficient chewing, swallowing large quantities, digesting the contents of cells instead of plant cell walls, and quickly excreting undigested waste (Dierenfield et al. 1982).

In addition, having a dependency on one type of plant such as bamboo can lead to nutritional deficiencies depending on seasonal cycles of the plant. In this regard, recently Nie et al. (2015) have studied the concentrations of calcium, phosphorus and nitrogen from different parts of the bamboo that a population of free pandas eat. They have seen that pandas in their habitat have a seasonal migration in two areas of different altitudes throughout the year and that fed two different species of bamboo. Both species have more calcium in the leaves and more phosphorus and nitrogen in the stems. As the seasonal variation in appearance and fall of leaves of two species is different due to the different altitude, when pandas are in one of the areas eat the leaves of a species and stems of the other while they do the reverse when they are in the other zone. So, pandas synchronize their seasonal migrations in order to get nutritionally the most out of both species of bamboo.

Another drawback of the bamboo dependence is flowering. It is a natural phenomenon that happens every 40-100 years, and when bamboo flowers, it dies, reducing the availability of food for pandas. During 1970-1980 there were two large-scale blooms in the habitat of pandas, and there were more than 200 deaths for this reason. However, and given that probably pandas have found during their evolution with many other massive blooms, in these occasions they are looking for other species of bamboo or travel long distances to meet their food needs (Wei et al. 2015).

In return, and as adaptation to eat this so specific food, the giant panda has a number of unique morphological features, such as strong jaws and very powerful molars, and especially a pseudo-thumb, like a 6th finger, which is actually a modified enlarged sesamoid bone, as an opposable thumb, which serves to hold bamboo while eating (Figure 1).

Fig1 panda's thumb

Figure 1. The “pseudo-thumb” of giant panda. Image from Herron & Freeman (2014).

And how is that the panda became an herbivore ?

It has been estimated that the precursor of the giant panda, omnivorous as other Ursids, began to eat bamboo at least 7 million years ago (My), and became completely dependent on bamboo between 2 and 2.4 My. This dietary change was probably linked to mutations in the genome, leading to defects in the metabolism of dopamine in relation to the appetite for meat, and especially the pseudogenization of Tas1r1 gene (Figure 2) of umami taste receptor (Jin et al. 2011). The umami is one of the five basic tastes, along with sweet, salty, sour and bitter. Umami is like “pleasant savoury taste”, usually recalls meat, and is related to L-glutamic acid, abundant in meat. This mutation in pandas favoured the loss of appetite for meat and reinforced their herbivore lifestyle. However, other additional factors had probably been involved, since Tas1r1 gene is intact in herbivores such as horses and cows (Zhao et al. 2010).

Fig2 Zhao F1 large

Figure 2. Phylogenetic tree of some carnivores with data for giant panda deduced from fossils (in blue) and from the molecular study of TasTr1 gene made by Zhao et al. (2010).

The intestinal microbiota of giant panda

As expected, when sequencing the complete genome of the giant panda (Li et al. 2010), specific genes responsible for the digestion of cellulose and hemicellulose have not been found. Logically, these complex polysaccharides of bamboo fibres would be possibly digested by cellulolytic microorganisms of the intestinal tract. So, their presence in panda must be studied.

When studying the sequences of 16S ribosomal DNA from faecal microbiota of various mammals, an increase in bacterial diversity is generally observed in sense carnivores – omnivores – herbivores (Ley et al. 2008). This diversity is lower in the panda than in herbivores, and as shown in Figure 3, pandas are grouped with carnivores (red circles) despite being herbivorous from the diet point of view.

Fig3 Ley

Figure 3. Principal component analysis (PC) of faecal bacterial communities from mammals with different colours according to the predominant diet (Law et al. 2008)

The intestinal microbiota of most herbivores contains anaerobic bacteria mainly from groups of Bacteroides, Clostridials, Spirochetes and Fibrobacterials, that have enzymatic ability to degrade fibrous plant material and thus provide nutrients for its guests. Instead, omnivores and carnivores have a particularly dominant microbiota of facultative anaerobes, such as Enterobacteriaceae, besides some Firmicutes, including lactobacilli and some Clostridials and Bacteroides.

As for the giant panda, the first studies made with culture-dependent methods and analysis of amplified 16S rRNA genes (Wii et al. 2007) identified Enterobacteriaceae and Streptococcus as predominant in the intestinal microbiota. Therefore, this study suggests that the microbiota of panda is very similar to that of carnivores, as we see in the mentioned comparative study with various mammals (Law et al. 2008), and therefore with little ability to use cellulose or hemicellulose.

However, a later study done with sequencing techniques of 16S (Zhu et al. 2011) from faecal samples of 15 giant pandas arrived at very different conclusions and it seemed that they found the first evidence of cellulose digestion by microbiota of giant panda. In 5500 sequences analysed, they found 85 different taxa, of which 83% were Firmicutes (Figure 4), and among these there were 13 taxa of Clostridium (7 of them exclusive of pandas) and some of these with ability to digest cellulose. In addition, in metagenomic analysis of some of the pandas some putative genes for enzymes to digest cellulose, xylans and beta-glucosidase-1,4-beta-xilosidase for these Clostridium were found. Altogether, they concluded that the microbiota of the giant panda had a moderate degradation capacity of cellulose materials.

Fig4 Zhu 2011-Fig1C

Figure 4. Percentage of sequences of the main bacterial groups found in faecal samples from wild individuals of giant panda (W1-W7) and captive (C1-C8), according to Zhu et al. (2011). Under each individual the n. sequences analysed is indicated.

But just three months ago a work (Xue et al. 2015) has been published that seems to go back, concluding that the intestinal microbiota of the giant panda is very similar to that of carnivores and have little of herbivores. It is an exhaustive study of last-generation massive sequencing of 16S rRNA genes of faecal samples from 121 pandas of different ages over three seasons. They obtained some 93000 sequences corresponding to 781 different taxa.

They found a predominance of Enterobacteriaceae and Streptococcus (dark red and dark blue respectively, Figure 5A) and very few representatives of probable cellulolitics as Clostridials. Moreover, these are not increased when more leaves and stems of bamboo are available (stage T3). These results correspond with what was already known of the low number of genes of cellulases and hemicellulases (2%), even lower than in the human microbiome. This negligible contribution of microbial digestion of cellulose, together with the commented fact that the panda is quite inefficient digesting bamboo, contradicts the hypothetical importance of digestion by the microbiota that had suggested a few years earlier, as we have seen before.

In addition, in this work a lot of variety in composition of microbiota between individuals has been found (Figure 5 B).

Fig5 Xue F1 large

Figure 5. Composition of the intestinal microbiota from 121 giant pandas, with (A) the dominant genera in all samples and (B) the relative contribution of each individual dominant genera, grouped by age and sampling time (Xue et al. 2015).

In this paper, a comparative analysis between the compositions of the intestinal microbiota of giant panda with other mammals has been made, and it has confirmed that the panda is grouped again with carnivores and is away from herbivores (Figure 6).

Fig6 Xue Fig4

Figure 6. Principal component analysis (PCoA) of microbiota communities from faecal samples of 121 giant pandas (blank forms), compared with other herbivores (green), omnivores (blue) and carnivores (red). The different forms correspond to different works: the circles are from Xue et al. (2015), where this Figure has been obtained.

All in all, the peculiar characteristics of the giant panda microbiota contribute to the extinction danger of this animal. Unlike most other mammals that have evolved their microbiota and digestive anatomies optimizing them for their specific diets, the aberrant coevolution of panda, its microbiota and its particular diet is quite enigmatic. To clarify it and know how to preserve this threatened animal, studies must be continued, combining metagenomics, metatranscriptomics, metaproteomics and meta-metabolomics, in order to know well the structure and metabolism of gut microbiota and its relationship with digestive functions and the nutritional status of the giant panda (Xue et al. 2015).

References

Dierenfield ES, Hintz HF, Robertson JB, Van Soest PJ, Oftedal OT (1982) Utilization of bamboo by the giant panda. J Nutr 112, 636-641

Herron JC, Freeman S (2014) Evolutionary Analysis, 5th ed. Benjamin Cummings

Jin K, Xue C, Wu X, Qian J, Zhu Y et al. (2011) Why Does the Giant Panda Eat Bamboo? A Comparative Analysis of Appetite-Reward-Related Genes among Mammals. PLos One 6, e22602

Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR et al. (2008) Evolution of Mammals and Their Gut Microbes. Science 320, 1647-1651

Li R, Fan W, Tian G, Zhu H, He L et 117 al. (2010) The sequence and de novo assembly of the giant panda genome. Nature 463, 311–317

Nie Y, Zhang Z, Raubenheimer D, Elser JJ, Wei W, Wei F (2015) Obligate herbivory in an ancestrally carnivorous lineage: the giant panda and bamboo from the perspective of nutritional geometry. Functional Ecology 29, 26–34

Rosen M (2015) Pandas’ gut bacteria resemble carnivores. Science News 19/05/2015

Wei G, Lu H, Zhou Z, Xie H, Wang A, Nelson K, Zhao L (2007) The microbial community in the feces of the giant panda (Ailuropoda melanoleuca) as determined by PCR-TGGE profiling and clone library analysis. Microb Ecol 54, 194–202

Wei F, Hu Y, Yan L, Nie Y, Wu Q, Zhang Z (2014) Giant Pandas Are Not an Evolutionary cul-de-sac: Evidence from Multidisciplinary Research. Mol Biol Evol 32, 4-12

Williams CL, Willard S, Kouba A, Sparks D, Holmes W et al. (2013) Dietary shifts affect the gastrointestinal microflora of the giant panda (Ailuropoda melanoleuca). J Anim Physiol Anim Nutr 97, 577-585

Xue Z, Zhang W, Wang L, Hou R, Zhang M et al. (2015) The bamboo-eating giant panda harbors a carnivore-like gut microbiota, with excessive seasonal variations. mBio 6(3), e00022-15

Zhao H, Yang JR, Xu H, Zhang J (2010) Pseudogenization of the Umami Taste Receptor Gene Tas1r1 in the Giant Panda Coincided with its Dietary Switch to Bamboo. Mol Biol Evol 27(12), 2669–2673

Zhu LF, Wu Q, Dai JY, Zhang SN, Wei FW (2011) Evidence of cellulose metabolism by the giant panda gut microbiome. Proc Natl Acad Sci USA 108, 17714–17719.

Bacteria of vineyard and terroir, and presence of Oenococcus in Priorat (South Catalonia) grapes

2nd May 2015 

The vine growers believe that the land on which they grow vines gives the wines a unique quality, and that is called terroir. We can consider that the physiological response of the vines to the type of soil and climatic conditions, together with the characteristics of the variety and form of cultivation, result in a wine organoleptic properties that define their terroir (Zarraonaindia et al 2015 ). However, it is not known if there could be a very specific microbiota of each terroir, as this subject has been barely studied.

Wine microorganisms in the grapes? Saccharomyces is not there or it has not been found there

The main protagonists of wine fermentations, alcoholic one (yeast Saccharomyces cerevisiae) and malolactic one (lactic acid bacteria Oenococcus oeni) usually do not appear until the must grape is fermenting to wine, in the cellar. In normal healthy grapes, S. cerevisiae is hardly found.

Oenococcus oeni in the grapes ? We have found it !

Regarding O. oeni, so far very little has been published about its presence and isolation from the grapes. In some works, as Sieiro et al (1990), or more recently Bae et al (2006), some lactic acid bacteria (LAB) have been isolated from the surface of grapes, but not O. oeni. Only Garijo et al (2011) were able to isolate a colony (only one) of O. oeni from Rioja grapes. Moreover, DNA of O. oeni has been detected in a sample of grapes from Bordeaux (Renouf et al 2005, Renouf et al 2007) by PCR-DGGE of rpoB gene, although in these works no Oenococcus has been isolated.

I am pleased to mention that recently our team have managed to isolate O. oeni from grapes, and typify them, and we are now working on a publication about it (Franquès et al 2015). Indeed, our research team of lactic acid bacteria (BL-URV), together with colleagues working on yeasts from the same group “Oenological Biotechnology” (Faculty of Oenology at the Universitat Rovira i Virgili in Tarragona, Catalonia, Spain) is working on a European project, called “Wildwine “(FP7-SME-2012 -315065), which aims to analyse the autochthonous microorganisms of Priorat area (South Catalonia), and select strains with oenological potential. This project also involves the Priorat Appellation Council and the cellar Ferrer-Bobet, as well as research groups and associations wineries from Bordeaux, Piedmont and Greece. In the framework of this project we took samples of grapes (Grenache and Carignan) from several vineyards of Priorat (Figure 1), as well as samples of wines doing malolactic fermentation. From all them we got 1900 isolates of LAB. We optimized isolation from grapes from the pulp and juice with various methods of enrichment, and so we got 110 isolated bacteria from grapes, identified as O. oeni by specific molecular techniques. Once typified, we have found that the molecular profiles of these strains do not coincide with commercial strains and so they are autochthonous. In addition, some of these strains from grapes were also found in the corresponding wine cellars.

Fig 1 garna-cari Priorat

Figure 1. Taking samples of Grenache (left) and Carignan (right) in Priorat area to isolate lactic acid bacteria such as Oenococcus (Pictures Albert Bordons).


The microbiota of grapes

The grapes have a complex microbial ecology, including yeasts, mycelial fungi and bacteria. Some are found only in grapes, such as parasitic fungi and environmental bacteria, and others have the ability to survive and grow in wines: especially yeasts, lactic acid bacteria (LAB) and acetic acid bacteria. The proportion of all them depends on the maturation of the grapes and the availability of nutrients.

When the fruits are intact, the predominant microbiota are basidiomycetous yeasts as Cryptococcus and Rhodotorula, but when they are more mature, they begin to have micro fissures that facilitate the availability of nutrients and explain the predominance just before the harvest of slightly fermentative ascomycetes as Candida, Hanseniaspora, Metschnikowia and Pichia. When the skin is already damaged more damaging yeasts may appear, as Zygosaccharomyces and Torulaspora, and acetic acid bacteria. Among the filamentous fungi occasionally there may have some very harmful as Botrytis (bunch rot) or Aspergillus producing ochratoxin. Although they are active only in the vineyard, their products can affect wine quality.

On the other hand, environmentally ubiquitous bacteria have been isolated from the grapes skin, as various Enterobacteriaceae, Bacillus and Staphylococcus, but none of them can grow in wine (Barata et al 2012).

Coming back to the possible specific microbiota of terroir, it has been found that some volatile compounds contributing to the aroma of the wine, such as 2-methyl butanoic acid and 3-methyl butanol, are produced by microorganisms isolated in the vineyards, as Gram-positive bacterium Paenibacillus, or the basidiomycetous fungus Sporobolomyces or the ascomycetous Aureobasidium. Therefore, there could be a relationship between some of the microbial species found in grapes and some detected aromas in wine, coming from the must of course (Verginer et al 2010).

Metagenomics as analytical tool of microbiota from grapes

Since conventional methods of isolation and cultivation of microorganisms are slow, laborious and some microbes cannot be grown up in the usual isolation media, massive sequencing methods or metagenomics are currently used. These consist of analysing all the DNA of a sample, and deducing which are the present microorganisms by comparing the sequences found with those of the databases. For bacteria the amplified DNA of V4 fragment from 16S RNA gene is used (Caporaso et al 2012).

This technique has been used with samples of botrytized wines (Bokulich et al 2012) and various LAB have been found (but not Oenococcus), including some not normally associated with wine. It has also been used to see the resident microbiota in wineries and how it changes with the seasons, resulting that in the surfaces of tanks and machinery of the cellar there is a majority of microorganisms neither related with wine nor harmful (Bokulich et al 2013).

With this technique Bokulich et al (2014) have also analysed the grapes and they have seen clear differences between the proportions of bacterial groups (and fungi) from different places, different varieties, as well as environmental or bio geographical conditions. For example, when analysing 273 samples of grape musts from California, the 3 varieties (Cabernet, Chardonnay and Zinfandel) are quite discriminated in a principal components analysis with respect to the bacterial communities found in each sample (Figure 2).

Thus, the dominant bacterial taxa or groups in a variety or given environment could provide some specifics traits on those wines, and this could explain some regional or terroir patterns in the organoleptic properties of these wines (Bokulich et al 2014).

Fig 2 ACP Bokulich 2014

Figure 2. Principal component analysis of bacterial communities of grape musts samples of Sonoma (California) from 3 varieties (Cabernet in red, Chardonnay in green and Zinfandel in blue) (Bokulich et al 2014).


We have also carried out a massive sequencing study with the same grape samples from which we have obtained isolates of O. oeni, as said before (Franquès et al 2015), and in more than 600,000 analysed sequences of 16S rRNA, we have found mainly Proteobacteria and Firmicutes. Among these gram-positive, we have found sequences of lactic acid bacteria (15%) and from these we have successfully confirmed the presence of O. oeni in 5% of the sequences. Therefore, we have isolated O. oeni from grapes and we have detected their DNA in the samples.

The bacterial microbiota of the vineyards and soil

As we see, microbiota of grapes and wine has been studied a little, but the soil microbiota has not been characterized. This one can define more clearly the terroir, which is influenced by the local climate and characteristics of the vineyard.

In Figure 3 the main genera found in different parts of the vine and soil are summarized (Gilbert et al 2014).

Fig 3 Gilbert 2014

Figure 3. Main bacteria and fungi associated with organs and soil of Vitis vinifera (Gilbert et al 2014)


Recently an interesting scientific work (Zarraonaindia et al 2015) has been published on this subject, with the aim to see if the soil could be the main original source of bacteria that colonize the grapes. These authors took samples of soil, roots, leaves, flowers and grapes from Merlot vines, from different areas and years, of Suffolk, New York, and they analysed the bacterial DNA by 16S rRNA sequencing. They found that 40% of the species found were present in all samples of soil and roots, while there was more variability in leaves and fruits, and moreover, 40% of those found in leaves and fruits were also found in soils. All this suggests that many bacteria originate in the soil.

Regarding the type of bacteria, they found that Proteobacteria (especially Pseudomonas and Methylobacterium) predominated (Figure 4), mainly in the aerial parts of the plant. There were also Firmicutes as expected, and Acidobacteria and Bacteroides.

Fig 4 microbiota vineyard

Figure 4. Composition of the bacterial community, at Phylum level, in samples from different organs of the vine and its soil (Zarraonaindia et al 2015).


Although variations were observed in all samples depending on the year (there may be different climatic conditions) and according to different edaphic factors (pH, C: N, humidity), the principal-components analysis (Figure 5) showed that the main types of samples (soil, roots, leaves, grapes) differ quite well, and bacterial taxon composition in samples of grape juice before fermentation is similar to that of grapes.

Fig 5 distribució grups mostres OTUs

Figure 5. Principal-components analysis showing the similarities in terms of the composition of bacterial taxonomic groups, among sample types, including musts (Zarraonaindia et al 2015).


This suggests that the bacterial community found in grapes remains relatively stable until the processing to musts, and that it is more stable than the differences between organs. At the same time, a large number of representatives of bacterial phyla of the grapes come from the soil. This can be explained because when grapes are harvested by hand, they are often placed in boxes that are left on the ground, or for mechanical harvest, the machinery used removes the soil and generates dust, which can colonize the grapes.

Therefore, the soil microbiota is a source of bacteria associated with vines and may play a role in the must and therefore in the wine, and potentially in the formation of the terroir characteristics. Some of these bacteria may have some roles not yet known in productivity or disease resistance of the plant, or contribute to the organoleptic characteristics of wine (Zarraonaindia et al 2015).

In addition, and thinking in wine microorganisms responsible for fermentations, as said, in our laboratory we have confirmed that there are some O. oeni strains in grapes and we have confirmed this by detecting their DNA in the same grapes.

References

Bae S, Fleet GH, Heard GM (2006) Lactic acid bacteria associated with wine grapes from several Australian vineyards. J Appl Microbiol 100, 712-727

Barata A, Malfeito-Ferreira M, Loureiro V (2012) The microbial ecology of wine grapes (Review). Int J Food Microbiol 153, 243-259

Bokulich NA, Joseph CML, Allen G, Benson AK, Mills DA (2012) Next-generation sequencing reveals significant bacterial diversity of botrytized wine. Plos One 7, e36357

Bokulich NA, Ohta M, Richardson PM, Mills DA (2013) Monitoring seasonal changes in winery-resident microbiota. Plos One 8, e66437

Bokulich NA, Thorngate JH, Richardson PM, Mills DA (2014) Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate. PNAS nov 25, E139-E148

Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6, 1621–1624

Franquès J, Araque I, Portillo C, Reguant C, Bordons A (2015) Presence of autochthonous Oenococcus oeni in grapes and wines of Priorat in South Catalonia. Article in elaboration.

Garijo P, López R, Santamaría P, Ocón E, Olarte C, Sanz S, Gutiérrez AR (2011) Eur Food Res Technol 233, 359-365

Gilbert JA, van der Lelie D, Zarraonaindia I (2014) Microbial terroir for wine grapes. PNAS 111, 5-6

Renouf V, Claisse O, Lonvaud-Funel A (2005) Understanding the microbial ecosystem on the grape berry surface through numeration and identification of yeast and bacteria. Aust J Grape Wine Res 11, 316-327

Renouf V, Claisse O, Lonvaud-Funel A (2007) Inventory and monitoring of wine microbial consortia. Appl Microbiol Biotechnol 75, 149-164

Sieiro C, Cansado J, Agrelo D, Velázquez JB, Villa TG (1990) Isolation and enological characterization of malolactic bacteria from the vineyards of North-western Spain. Appl Environ Microbiol 56, 2936-2938

Verginer M, Leitner E, Berg G (2010) Production pf volatile metabolites by grape-associated microorganisms. J Agric Food Chem 58, 8344-8350

Zarraonaindia I, Owens SM, Weisenhorn P, West K, Hampton-Marcell J, Lax S, Bokulich NA, Mills DA, Martin G, Taghavi S, Van der Lelie D, Gilbert JA (2015) The soil microbiome influences grapevine-associated microbiota. mBio 6, e02527-14

No sé ni cómo te atreves

Fotografía y esas pequeñas cosas de cada día

Pols d'estels

El bloc d'Enric Marco

Life Secrets

For my students

All you need is Biology

Blog professional sobre Biologia · Blog profesional sobre Biología · A professional blog about Biology

Rambles of a PA student

Caffeinated forays into biological imaginings.

Horitzons llunyans

Mirades distants

#4wine

Los vinos son pequeñas historias dentro de una botella y nosotras queremos contarte las nuestras

Vi·moments·persones

Un maridatge a tres bandes

SciLogs: Artificial, naturalmente

Interesting things on life sciences and on nature, and other things not so "bio"

microBIO

Interesting things on life sciences and on nature, and other things not so "bio"

RealClimate

Interesting things on life sciences and on nature, and other things not so "bio"

Quèquicom

Interesting things on life sciences and on nature, and other things not so "bio"

Dionís de viatge a Ítaca

Experiències enoturístiques

%d bloggers like this: