Blog Archives

Yeasts 3000-years-old are alive and other histories of dormant cells

18th August 2019

Translated from the original article in Catalan

A few months ago -April 2019- my friend Jordi Diloli, Professor and Archaeologist, shared a very surprising article (Aouizerat et al 2019) with me. It was echoed on the internet (Borschel-Dan 2019), and I will comment here.

“Resurrected” yeasts from 3,000 years ago

The group of researchers led by Ronen Hazan of the Hebrew University of Jerusalem took samples of 21 clay containers from various sites in present-day Israel from 2500 to 5000 years ago, from the Persian, Philistine and Egyptian (this is the oldest) periods. Archaeologists believed that these vessels contained fermented beverages such as beer or mead (Figure 1). The authors submerged the containers in a rich YPD medium, specific for growing yeasts and other fungi, and incubated them at room temperature for 7 days. Then, samples of this medium were spread on agar plates with the specific medium, and the resulting colonies were isolated for subsequent analyses (Aouizerat et al 2019).

Fig 1 pottery Hazan

Figure 1. Clay vessels from where the yeasts were isolated (Image of Judah Ari Gross, Times of Israel).

 

The isolates that were found were 6 strains of different yeast species, and one of which was Saccharomyces cerevisiae, specifically from a Philistine site dated 3000 years ago. Obviously, it is very surprising that living yeasts of such ancient remains have been isolated. For this reason, the authors of the work carried out a series of experiments that could confirm this unique fact and that the isolates were not a product of contamination.

Firstly Aouizerat et al (2019) showed that it is possible to isolate yeasts from clay vessels that have contained beer or wine after a certain time. They did so with containers with unfiltered beer buried for 3 weeks, and also with another vessel that had repeatedly contained wine but not used last 2 years. With these samples they developed the isolation methodology and in both cases they were able to isolate yeasts. No isolates were obtained from a control sample with filtered beer, therefore without yeasts.

To demonstrate that the isolates were originals of the old vessels because these had contained the fermented beverage, authors applied the same protocol with samples of other ceramics that were surely not for this purpose, and also with sediments near the containers. The result was clearly negative for these samples: only 2 isolated yeasts from 110 samples, while the mentioned 6 yeast strains were isolated from the 21 initial samples. That is, yeasts would be significantly more abundant in containers of alcoholic fermented beverages than in other related archaeological vessels or sediments around them.

Another argument that supports the hypothesis of this work was the identification of these 6 yeasts. Total DNA was obtained and processed to sequence the genomes and compare them with the databases. Two of them, from the Egyptian period, were identified as Saccharomyces delphensis, a species that has been isolated from African dried figs and is not at all common on soil. Therefore, this suggests the use of figs in the alcoholic beverages of these containers. Another isolate was identified as Rhodotorula, common pollutant yeast in African beers. Another was identified as Debaryomyces, a frequent yeast in traditional African sorghum beers. As said before, another isolate was identified as Saccharomyces cerevisiae, the yeast most used to make wine, beer or bread (Figure 2). In spite of this, the genetic sequence of this S. cerevisiae was clearly different from the strains most commonly used today, as commercial or laboratory strains, and therefore the possibility of contamination is excluded. And finally, the other isolate was identified as Hypopichia burtonii, previously isolated yeast from Ethiopian mead.

These genetic data, together with the phenotypic characterization -fermentative kinetics and other biochemical characteristics carried out with the isolates by Aouizerat et al (2019)- suggest that these yeasts actually come from an environment related to alcoholic beverages. These authors even elaborated beer with these isolates and some of them, especially the Saccharomyces, gave a very good analytical and sensory result.

Fig 2 Saccharomyces_cerevisiae_SEM.jpg

Figure 2. Saccharomyces cerevisiae at the scanning electronic microscope (MD Murtey & P Ramasamy)

 

Aouizerat et al (2019) conclude that the isolates are descendants of yeasts that were originally used 3000 years ago, in large quantities and in repeated fermentations. This would have facilitated their survival in pore microenvironments of the ceramic matrix of these containers, and the microcolonies would have continued to grow minimally for millennia thanks to the humidity and residual nutrients. The authors make the analogy with some handmade beers where it is usual that the containers waste serve as starter for new productions.

Finally, the authors of this work speculate that it is possible to isolate microorganisms from archaeological remains, not only yeasts, and that in the case of bacteria it could even be easier, given the resistance characteristics of some of them, such as the sporulated ones.

 

Is there no previous similar work to that of Aouizerat et al (2019) ?

As we have seen, this is certainly a very surprising finding. Scientifically, the work is quite accurate and has been “approved” by the international community: the article is published in an open-access journal with prestige (mBio, high impact factor: 6.7), of the American Society for Microbiology, where all the articles are reviewed by a minimum of two experts, besides the editors. The results presented by the article seem very well worked, and the conclusions are well reasoned.

However, in my opinion it is still almost incredible, and it is strange that nothing like this has been found before. Maybe if someone else had previously tried to isolate such old microorganisms without getting them, perhaps it would not have been published ? Maybe nobody has previously tried to do something similar ? A “malicious” explanation might be that archaeologists have their own interests and microbiologists or molecular biologists have others, and that for this type of work the collaboration of both is needed. Well, it seems not being so, since there are a lot of studies on microorganisms from ancient remains, but they have been almost always focused on the detection and analysis of ancient DNA. These studies demonstrated the presence of certain microorganisms although they did not proceed to isolate them.

 

DNA gives evidence of microorganisms in ancient remains

In relation to yeasts, the oldest evidence is that ribosomal DNA of Saccharomyces cerevisiae has been obtained from residues found in Egyptian wine jars 5000 years old (Cavalieri et al 2003). It must be remembered that the oldest archaeological evidence of large-scale wine production has 7400 years, in north of the Zagros Mountains, in present-day Iran (McGovern et al 1986). As it is known, S. cerevisiae is also the bread and beer yeast, derived from cereals, but since neither S. cerevisiae nor its spores are aerial, surely the use of this yeast in fermented grape juice, as well as dates, figs or honey, historically preceded its use for brewing and bread (Cavalieri et al 2003). It is probable that the wine yeasts naturally occurring in damaged grapes (Mortimer & Polsinelli 1999) were used to ferment other cereal products such as cereals, and after centuries of selection for humans, they evolved into specific strains to ferment food and beverages from cereals.

The genomes of pathogenic microorganisms have also been studied in archaeological remains by means of new massive DNA sequencing techniques, in order to know to epidemic diseases of historical importance, such as black plague, tuberculosis, cholera or leprosy (Andam et al 2016). Logically, in these cases the archaeological remains are human ones, such as bones, teeth, coprolites or mummified tissues. In this way, for example, the phylogeny and evolution of Yersinia pestis strains causing the black plague have been recognized by remains of the Bronze Age (5000 years ago) and until the well-known epidemics of the 6th and 14th centuries (Bos et al 2011). Another well-known case is the Helicobacter pylori genome identified in the intestine of the Ötzi mummy, the iceman in the eastern Alps, 5300 years old (Maixner et al 2016).

DNA has also been isolated from specific bacteria of the human gut, such as Bifidobacterium and Bacteroides, to demonstrate the human presence in archaeological sediments 5000-12000 years old, in north east of Poland (Madeja et al 2009).

It should be remembered that DNA is degraded over time, and in fact it is more unstable than other cellular components. This macromolecule spontaneously suffers damage by oxidation, hydrolysis, and fragmentation in pieces that may be less than 100 bp. Most fossils or other biological remains of more than 100,000 years old no longer contain PCR-amplifiable DNA (Hofreiter et al 2001), although it seems that if the samples are extracted from frozen sediments, with constant temperatures below zero, DNA could be recovered from up to 400,000 years or a little longer (Willerslev et al 2003). In addition the tissues are colonized over time by fungi and bacteria that greatly reduce the relative amount of endogenous molecules and can contribute to giving false positives. The risk of contamination is very high and often this is not taken in account. Generally the DNA of the host that is analysed can be less than 1% of the total DNA found. All these factors complicate the DNA extraction, the construction of sequence libraries, the alignment of DNAs and the analysis of genomes (Andam et al 2016).

Surprisingly, there are a few published works where it is found old DNA of plants, animals and various microorganisms, some million years (My) old, even hundreds of My. The most remarkable are those obtained from amber samples of 20-40 My, and those obtained from a halite 250 My old. This would be comparable to the Jurassic Park fiction where almost non-degraded DNA from the dinosaurs of 100 My old “was recovered”.

Hebsgaard et al (2005) thoroughly reviewed all these more spectacular cases, with the conclusion that these works suffered from inadequate experimental approaches and inadequate authentication of the results. Therefore, there are great doubts as to whether DNA sequences and in some cases viable bacteria could survive such large geological times.

In addition, it is worrying that these works with so old DNA have not been replicated independently in order to confirm their authenticity, and that they did not show a relationship between the age of the sample and the persistence of DNA depending on the different types of bacteria (Willerslev et al 2004). In contrast, Willerslev et al studied the persistence of DNA in permafrost and they found a clear relationship of DNA degradation with time (Figure 3). As seen, DNA amount is very small beyond 100,000 years and it is hardly found beyond 1 My.

Fig 3 willerslev A

Figure 3. Persistence of not degraded bacterial DNA over time (kyr, thousands of years) maintained in permafrost, measured by fluorescence (Willerslev et al 2004).

 

When analysing the bacterial phyla of these DNA, Willerslev et al (2004) observed (Figure 4) that the most persistent are those of Arthrobacter, the main representative of Actinobacteria (high G+C gram-positive), followed by sporulated (Bacillaceae and Clostridiaceae), and finally the Gram-negative Proteobacteria.

Fig 4 willerslev D

Figure 4. Proportions of the main bacterial phyla (Actinobacteria in brown, sporulated in orange and Proteobacteria in blue) based on DNA obtained from permafrost samples, along time (kyr, thousands of years) (Willerslev et al 2004).

 

This increased persistence of non-sporulated Actinobacteria is surprising because sporulated bacteria have always been considered the most resistant of all types of cells. Although endospores have special adaptations such as proteins binding DNA to reduce the rate of genetic modifications, they do not have active metabolism or repair and their DNA will degrade over time. The mechanism of greater resistance of Actinobacteria is unknown, but there may be some activity and repair of DNA at temperatures below zero, and/or adaptations related to the dormant cells state (Willerslev et al 2004).

Anyway, the limit for PCR-amplifying the DNA would be between 400,000 years and 1.5 My for samples kept below zero, but this is much more unlikely in non-frozen materials, such as the amber of halite samples of million years, and much less likely to find viable cells from these samples so old (Willerslev et al 2004).

 

“Resurrected” bacteria

The same commented works where DNA of some millions of years (My) was found, are the most surprising cases of having “resurrected” microorganisms, basically bacteria: viable cells of the sporulated Bacillus from amber samples of 30 My (Cano & Borucki 1995), Staphylococcus also from amber of about 30 My (Lambert et al 1998), and the most spectacular case of Bacillus from an halite of 250 My (Vreeland et al 2000 ). This sporulated bacterium would have been in a hyper-saline environment of the last Permian and trapped in a salt crystal, surviving until now. In the case of Staphylococcus isolated from amber, in spite of not being sporulated, they are bacteria very resistant to extreme conditions, and which have been isolated also from ancient permafrost and very dry environments (Lambert et al 1998).

In spite of this, the revision of these cases by Hebsgaard et al (2005) concludes that none of them fulfilled the relative rate of molecular distance test, which is the probable rate of mutations calculated in comparison to related lineages. Therefore, these isolations are arguable and not reproduced. In addition, in the case of the 250 My Bacillus, it has been argued that the inclusion of bacteria in the halite could be the consequence of a subsequent recrystallization (Lowenstein et al 2011).

Another review on microorganism preservation records (Kennedy et al 1994) comments published cases up to 600 My, indicating that it is curious that there are several cases with more than 1 My, and also cases with less than 10,000 years ago, but there are very few cases of intermediate periods. These authors also point out the doubts raised by works with surviving bacteria so old, which would surely be artefacts or contaminations.

On the other hand, the most credible works are those of Abyzov et al (2006) and Soina et al (2004), which demonstrated the presence of several living microorganisms, both prokaryotes and eukaryotes (especially yeasts, but also some microalgae), in Antarctic ice samples that have some thousands of years. These authors combined classical microbiological methods, such as enrichment and isolation of colonies, together with epifluorescence microscopy, electronic microscopy, and molecular techniques. The bacteria found were Gram-positive (Micrococcus) and gram-negative (Arthrobacter), which are not sporulated, but they have cist-shaped dormant cells, which can survive while maintaining viability at temperatures below 0ºC for some thousands of years.

When geologically ancient DNA findings are published as well as viable cultures of ancient samples, the independent reproduction of the results by another laboratory is fundamental, to exclude any contamination from the same laboratory. In the case of having recovered living cells, it is necessary to demonstrate the reproducibility of the isolation, sequencing the genomes of the cultures obtained in independent laboratories from the same sample, and checking that in both cases the genomes coincide (Hebsgaard et al 2005).

From the remains of the Roman fort of Vindolanda, in the north of England, viable endospores of Thermoactinomyces, member of Bacillales (Unsworth et al 1977) have been recovered. They are about 1900 years old and the remains were a mixture of clay with straw and other vegetable materials. The authors propose to use these sporulated bacteria as indicators in archaeological studies.

Besides sporulated bacteria, there are several groups of non-sporulated ones for which anabiosis resistance abilities have been demonstrated. In particular, they have been isolated from permafrost and the tundra soil of Siberia of about 1 My (Suzina et al., 2006), in the limit of what we mentioned earlier (Willerslev et al 2004), which is quite difficult to believe. In order to study experimentally the formation of these anabiosis forms, Suzina et al incubated several gram-positive and gram-negative bacteria, and some archaea, in poor media with limiting nitrogen, and after a few months they obtained their dormant cells. They had cist structures, with capsule and a thickened cell wall, intramembranous particles and a condensed nucleoid (Figure 5). They also observed that these cysts did not have metabolic activity and supported stress factors such as lack of nutrients or heating.

Studying the permafrost isolates, they confirmed that there are cist structures very similar to those obtained in the laboratory, with multi-layer wall structures of up to 0.4 μm. In fact, these authors believe that most of the bacteria present in the permafrost and the tundra are in the form of a cyst (Suzina et al 2006).

Fig 5 fig2 modi Suzina

Figure 5. Sections of a vegetative cell (a) of Micrococcus luteus and of a cyst cell (b) of the same bacterium, obtained after 9 months of culture in a medium limiting in nitrogen. C, microcapsule; CW, cell wall; OL1, 2, 3, outer layers of the cell wall; IL, inner layer of the wall; CM, cytoplasmic membrane; N, nucleoid. The bar measures 0.3 μm (Suzina et al., 2006).

 

Other “resurrected” yeasts and fungi

Besides the surprising mentioned article by Aouizerat et al. (2019), there are other few published cases of yeasts and other “resurrected” fungi such as the following.

Chicha is a beer-like beverage from corn, yellowish and slightly effervescent, elaborated and consumed by Andean populations for some thousands of years, whose traditional process has the peculiarity of using amylase of saliva for convert the starch into fermentable sugars. Fermentation traditionally took place in clay containers called “pondos”. From the remains of the chicha pondos from the Hipia culture in Quito (2100-2800 years old), various yeast were isolated, especially Candida, Pichia and Cryptococcus (Gomes et al 2009). Interestingly, some of these yeasts have been confirmed molecularly as Candida theae, similar to those isolated from contaminated Asian tea (Chang et al 2012). It is worth mentioning the absence of Saccharomyces in these ancient chicha, although today it is the main yeast, coming probably from beer and wine fermentation that led the Spaniards (Gomes et al 2009).

From Greenland ice samples of about 100,000 years (Ma et al 1999), several microorganisms were revived, such as bacteria (Micrococcus, RhodotorulaSarcina) and yeasts (Candida, Cryptococcus) and other fungi (PenicilliumAspergillus). The authors also isolated the DNAs and demonstrated the phylogenetic relationship of the isolates. Once again, we see how ice provides a stable environment that facilitates the conservation of microorganisms and their DNA.

Raghukumar et al (2004) have recovered living Aspergillus (sporulated Ascomycota fungus) and other fungi from sediment samples of the deep-sea, about 5900 m deep in the Chagos trench, south of the Maldives, in the Indian Ocean. Based on the depth in the sediment and the present Radiolaria, authors estimated that they correspond to a minimum of 180,000 years, and up to 430,000 years in some samples. From the isolates identified as A. sydowii they obtained spores that germinated and grew in hydrostatic pressure equivalent to the depth of 5000 m, and at a temperature of 5ºC. With microscopy of epifluorescence and bright field, the fungal hypha and their relation to the particles of the sediment are clearly observed (Figure 6). It seems that this Aspergillus found in the deep-sea is the oldest fungus recovered alive so far. The authors suggest that preservation would have been possible thanks to high hydrostatic pressure, along with low temperature.

Fig 6 Raghukumar Aspergillus deepsea indian

Figure 6. Photomicrographies of deep-sea sediment (5900 m) of the Indian Ocean with hyphae of Aspergillus sydowii and sediment particles. (a) epifluorescence microscopy combined with that of bright field; (b) epifluorescence (Raghukumar et al 2004).

 

One of the most surprising works, and hard to believe, is that of Kochkina et al (2001), where a lot of fungi of all kinds and bacteria, especially actinobacteria, were isolated from samples of permafrost from Russia, Canada and Antarctica reaching 3 My old. The authors even suggested that there is no limit of years to recover viable microorganisms. This article has had very little echo, and it is not even mentioned by later articles as Raghukumar et al. (2004).

 

Conclusions

As we have seen, evidence of DNA from no-living yeasts in ancient remains related to winemaking dates back to around 5000 years in ancient Egypt (Cavalieri et al 2003). Regarding other microorganisms, taking into account the natural degradation of DNA over time, it seems that the oldest samples would be about 400,000 years at most, in particular actinobacteria in frozen sediments such as permafrost (Willerslev et al 2003 ). Publications of bacterial DNA recovered from several millions years (up to 600 My) have many scientific concerns about their credibility and reliability (Kennedy et al 1994).

With regard to living yeast as those of 3000 years apparently isolated by Aouizerat et al (2019), it seems that Candida and others were isolated from containers to elaborate chicha about 2800 years old (Gomes et al 2009), although this reference is a review and the original work does not appear to have been published. Other authors (Abyzov et al 2006; Soina et al 2004) also find alive yeasts, without specifying which ones, in Antarctic ice samples of some thousands of years. More surprising are the isolated isolations of yeast and other fungi and bacteria from Greenland ice samples 100,000 years old (Ma et al 1999), as well as those of Aspergillus from the Indian Ocean seabed of about 180,000 years (Raghukumar et to 2004).

Regarding other “resurrected” microorganisms, some of the most reliable are the several Antarctic ice bacteria of some thousands of years (Abyzov et al 2006) and Thermoactinomyces spores of Roman remains 1900 years old (Unsworth et to 1977). Of the oldest, perhaps the anabiosis forms of bacteria conserved in permafrost a million years old (Suzina et al., 2006) would have certain likelihood. Curiously, these bacteria would be non-sporulated but they would have a cyst structure, with multi-layer walls and other intracellular modifications. The other findings of “resurrected” bacteria from more millions of years of amber or halite, just like their DNA and also because of this, are very hard to believe (Hebsgaard et al 2005).

Thinking in the cellular forms of resistance and anabiosis, as the bacterial endospores and the mentioned cysts, it must be remembered that yeasts, like many other fungi, have the ability to produce spores, in particular ascospores as they are Ascomycetes. Although these ascospores have a greater capacity for resistance than vegetative cells in dry conditions or other inhospitable environments and have a persistence in time, apparently there is no work (or I have not been found) related to the recovery of yeasts ascospores from ancient remains.

The work of Aouizerat et al (2019) makes no mention of the yeast spores, neither as a possible explanation of the yeast survival in these ancient remains. In fact, they propose that the microcolonies of yeasts on ceramics pores would have continued to grow minimally during these 3000 years thanks to the humidity and residual nutrients. Well, we do not know, and neither if the yeast ascospores have had any role.

Finally, we can believe the finding of Aouizerat et al (2019) is truth, but obviously further investigation in other similar archaeological samples must be done. This research should be done not only for yeasts, but also for bacteria of other fermented products. Besides considering the sporulated ones, other bacteria should be considered, that could survive thanks to the cell cysts or other forms of anabiosis.

 

Bibliography

Abyzov SS et al (2006) Super-long anabiosis of ancient microorganisms in ice and terrestrial models for development of methods to search for life on Mars, Europa and other planetary bodies. Adv Space Res 38, 1191-1197

Andam CP et al (2016) Microbial genomics of ancient plagues and outbreaks. Trends Microbiol 24, 978 –990

Aouizerat T et al (2019) Isolation and characterization of live yeast cells from ancient vessels as a tool on bio-archaeology. mBio 10, 2, 1-21

Borschel-Dan A (2019) Israeli scientists brew groundbreaking “ancient beer” from 5,000-year-old yeast. The Times of Israel, 22nd may 2019.

Bos KI et al (2011) A draft genome of Yersinia pestis from victims of the Black Death. Nature 478, 506–510

Cano, R.J. and Borucki, M.K. (1995) Revival and identification of bacterial spores in 25- to 40-million year-old Dominican amber. Science 268, 1060–1064

Cavalieri D et al (2003) Evidence for S. cerevisiae fermentation in ancient wine. J Mol Evol 57:S226-232

Chang CF et al (2012) Candida theae sp. nov., a new anamorphic beverage-associated member of the Lodderomyces clade. Int J Food Microbiol 153, 10-14.

Gomes FCO et al (2009) Traditional foods and beverages from South America: microbial communities and production strategies. Chapter 3 in Industrial Fermentation, ed. J Krause & O Fleischer, Nova Science Publishers.

Hofreiter M et al (2001) Ancient DNA. Nature Rev Genet 2, 353–359.

Kennedy MJ et al (1994) Preservation records of micro-organisms: evidence of the tenacity of life. Microbiology 140, 2513-2529.

Kochkina GA et al (2001) Survival of micromycetes and actinobacteria under conditions of long-term natural cryopreservation. Microbiology 70, 356-364

Lambert LH et al (1998) Staphylococcus succinus sp. nov., isolated from Dominican amber. Int J Syst Bacteriol 48, 511-518

Lowenstein TK et al (2011) Microbial communities in fluid inclusions and long-term survival in halite. GSA Today 21, 4-9

Ma L et al (1999) Revival and characterization of fungi from ancient polar ice. Mycologist 13, 70-73.

Madeja J et al (2009) Bacterial ancient DNA as an indicator of human presence in the past: its correlation with palynological and archaeological data. J Quaternary Sci 24, 317-321.

Maixner F et al. (2016) The 5300-year-old Helicobacter pylori genome of the Iceman. Science 351, 162–165

McGovern PE et al (1986) Neolithic resinated wine. Nature 381:480–481

Mortimer R & M Polsinelli (1999) On the origins of wine yeast. Res Microbiol 150, 199-204

Raghukumar C et al (2004) Buried in time: culturable fungi in a deep-sea sediment core from the Chagos Trench, Indian Ocean. Deep Sea Res Part I: Oceanog Res Papers 51, 1759-1768

Soina VS et al (2004) The structure of resting microbial populations in soil and subsoil permafrost. Astrobiology 4 (3), 345–358.

Suzina et al (2006) The structural bases of long-term anabiosis in non-spore-forming bacteria. Adv Space Res 38, 1209-1219.

Unsworth BA et al (1977) The Longevity of Thermoactinomycete Endospores in Natural Substrates. J Appl Microbiol 42, 45-52

Vreeland RH et al (2000) Isolation of a 250 milion-year-old halotolerant bacterium from a primary salt cristal. Nature 407, 897-900.

Willerslev E et al (2003) Diverse plant and animal DNA from Holocene and Pleistocene sedimentary records. Science 300, 791-795

Willerslev E et al (2004) Long-term persistence of bacterial DNA. Curr Biol 14, PR9-R10.

 

Advertisements

The giant panda is herbivore but has the gut microbiota of a carnivore

September 30th, 2015

The giant panda (Ailuropoda melanoleuca, literally Greek for “white and black cat feet”) is one of the most intriguing evolutionary mammal species. Despite its exclusively herbivorous diet, phylogenetically it is like a bear because it belongs to Ursids family, order Carnivores. Its diet is 99% bamboo and the other 1% is honey, eggs, fish, oranges, bananas, yams and leaves of shrubs.

It lives in a mountain area in central China, mainly in Sichuan province, and also in provinces of Shaanxi and Gansu. Due to the construction of farms, deforestation and other development, the panda has been driven out of the lowland where he lived. It is an endangered species that needs protection. There are about 300 individuals in captivity and 3000 in freedom. Although the numbers are increasing, it is still endangered, particularly due to its limited space (20,000 km2) and its very specific habitat (bamboo forests).

Fig0 panda bamboo

Thus, the giant panda has an almost exclusive diet of different species of bamboo, mainly the very fibrous leaves and stems, and buds in spring and summer. It is therefore a poor quality -digestive diet, with little protein and plenty of fibre and lignin content. They spend about 14 hours a day eating and can ingest about 12 kg of bamboo a day.

Most herbivores have modifications of the digestive tract that help them to retain the food in digestion process and contain microbial populations that allow them to eat exclusively plant materials, rich in complex polysaccharides such as cellulose and hemicellulose. These specializations may be compartmentalization of the stomach of ruminants and other typical non-ruminants (kangaroos, hamster, hippopotamus and some primates) or enlargement of the large intestine, characteristic of equines, some rodents and lagomorphs (rabbits and hares).

However, despite his exclusively herbivorous diet, surprisingly the giant panda has a typical carnivorous gastrointestinal tract, anatomically similar to dog, cat or raccoon, with a simple stomach, a degenerated caecum and a very short colon. The gastrointestinal tract of pandas is about 4 times the size of the body, such as other carnivores, whereas herbivores have about 10-20 times the size of the body, to efficiently digest large amounts of forage. With this, the panda intestinal transit time is very short, less than 12 hours. This severely limits the ability of potential fermentation of plant materials (Williams et al. 2013).

For these reasons, the digestion of bamboo for panda is very inefficient, despite their dependency. Pandas consume the equivalent of 6% of their body weight per day, with a 20% digestibility of dry matter of bamboo. Of this, 10% corresponds to the low protein content of bamboo, and the rest are polysaccharides, particularly with coefficients of digestion of 27% for hemicellulose and 8% for the pulp.

It seems as if the giant panda would have specialized in the use of a plant with high fibre content without having modified the digestive system, by means of an efficient chewing, swallowing large quantities, digesting the contents of cells instead of plant cell walls, and quickly excreting undigested waste (Dierenfield et al. 1982).

In addition, having a dependency on one type of plant such as bamboo can lead to nutritional deficiencies depending on seasonal cycles of the plant. In this regard, recently Nie et al. (2015) have studied the concentrations of calcium, phosphorus and nitrogen from different parts of the bamboo that a population of free pandas eat. They have seen that pandas in their habitat have a seasonal migration in two areas of different altitudes throughout the year and that fed two different species of bamboo. Both species have more calcium in the leaves and more phosphorus and nitrogen in the stems. As the seasonal variation in appearance and fall of leaves of two species is different due to the different altitude, when pandas are in one of the areas eat the leaves of a species and stems of the other while they do the reverse when they are in the other zone. So, pandas synchronize their seasonal migrations in order to get nutritionally the most out of both species of bamboo.

Another drawback of the bamboo dependence is flowering. It is a natural phenomenon that happens every 40-100 years, and when bamboo flowers, it dies, reducing the availability of food for pandas. During 1970-1980 there were two large-scale blooms in the habitat of pandas, and there were more than 200 deaths for this reason. However, and given that probably pandas have found during their evolution with many other massive blooms, in these occasions they are looking for other species of bamboo or travel long distances to meet their food needs (Wei et al. 2015).

In return, and as adaptation to eat this so specific food, the giant panda has a number of unique morphological features, such as strong jaws and very powerful molars, and especially a pseudo-thumb, like a 6th finger, which is actually a modified enlarged sesamoid bone, as an opposable thumb, which serves to hold bamboo while eating (Figure 1).

Fig1 panda's thumb

Figure 1. The “pseudo-thumb” of giant panda. Image from Herron & Freeman (2014).

And how is that the panda became an herbivore ?

It has been estimated that the precursor of the giant panda, omnivorous as other Ursids, began to eat bamboo at least 7 million years ago (My), and became completely dependent on bamboo between 2 and 2.4 My. This dietary change was probably linked to mutations in the genome, leading to defects in the metabolism of dopamine in relation to the appetite for meat, and especially the pseudogenization of Tas1r1 gene (Figure 2) of umami taste receptor (Jin et al. 2011). The umami is one of the five basic tastes, along with sweet, salty, sour and bitter. Umami is like “pleasant savoury taste”, usually recalls meat, and is related to L-glutamic acid, abundant in meat. This mutation in pandas favoured the loss of appetite for meat and reinforced their herbivore lifestyle. However, other additional factors had probably been involved, since Tas1r1 gene is intact in herbivores such as horses and cows (Zhao et al. 2010).

Fig2 Zhao F1 large

Figure 2. Phylogenetic tree of some carnivores with data for giant panda deduced from fossils (in blue) and from the molecular study of TasTr1 gene made by Zhao et al. (2010).

The intestinal microbiota of giant panda

As expected, when sequencing the complete genome of the giant panda (Li et al. 2010), specific genes responsible for the digestion of cellulose and hemicellulose have not been found. Logically, these complex polysaccharides of bamboo fibres would be possibly digested by cellulolytic microorganisms of the intestinal tract. So, their presence in panda must be studied.

When studying the sequences of 16S ribosomal DNA from faecal microbiota of various mammals, an increase in bacterial diversity is generally observed in sense carnivores – omnivores – herbivores (Ley et al. 2008). This diversity is lower in the panda than in herbivores, and as shown in Figure 3, pandas are grouped with carnivores (red circles) despite being herbivorous from the diet point of view.

Fig3 Ley

Figure 3. Principal component analysis (PC) of faecal bacterial communities from mammals with different colours according to the predominant diet (Law et al. 2008)

The intestinal microbiota of most herbivores contains anaerobic bacteria mainly from groups of Bacteroides, Clostridials, Spirochetes and Fibrobacterials, that have enzymatic ability to degrade fibrous plant material and thus provide nutrients for its guests. Instead, omnivores and carnivores have a particularly dominant microbiota of facultative anaerobes, such as Enterobacteriaceae, besides some Firmicutes, including lactobacilli and some Clostridials and Bacteroides.

As for the giant panda, the first studies made with culture-dependent methods and analysis of amplified 16S rRNA genes (Wii et al. 2007) identified Enterobacteriaceae and Streptococcus as predominant in the intestinal microbiota. Therefore, this study suggests that the microbiota of panda is very similar to that of carnivores, as we see in the mentioned comparative study with various mammals (Law et al. 2008), and therefore with little ability to use cellulose or hemicellulose.

However, a later study done with sequencing techniques of 16S (Zhu et al. 2011) from faecal samples of 15 giant pandas arrived at very different conclusions and it seemed that they found the first evidence of cellulose digestion by microbiota of giant panda. In 5500 sequences analysed, they found 85 different taxa, of which 83% were Firmicutes (Figure 4), and among these there were 13 taxa of Clostridium (7 of them exclusive of pandas) and some of these with ability to digest cellulose. In addition, in metagenomic analysis of some of the pandas some putative genes for enzymes to digest cellulose, xylans and beta-glucosidase-1,4-beta-xilosidase for these Clostridium were found. Altogether, they concluded that the microbiota of the giant panda had a moderate degradation capacity of cellulose materials.

Fig4 Zhu 2011-Fig1C

Figure 4. Percentage of sequences of the main bacterial groups found in faecal samples from wild individuals of giant panda (W1-W7) and captive (C1-C8), according to Zhu et al. (2011). Under each individual the n. sequences analysed is indicated.

But just three months ago a work (Xue et al. 2015) has been published that seems to go back, concluding that the intestinal microbiota of the giant panda is very similar to that of carnivores and have little of herbivores. It is an exhaustive study of last-generation massive sequencing of 16S rRNA genes of faecal samples from 121 pandas of different ages over three seasons. They obtained some 93000 sequences corresponding to 781 different taxa.

They found a predominance of Enterobacteriaceae and Streptococcus (dark red and dark blue respectively, Figure 5A) and very few representatives of probable cellulolitics as Clostridials. Moreover, these are not increased when more leaves and stems of bamboo are available (stage T3). These results correspond with what was already known of the low number of genes of cellulases and hemicellulases (2%), even lower than in the human microbiome. This negligible contribution of microbial digestion of cellulose, together with the commented fact that the panda is quite inefficient digesting bamboo, contradicts the hypothetical importance of digestion by the microbiota that had suggested a few years earlier, as we have seen before.

In addition, in this work a lot of variety in composition of microbiota between individuals has been found (Figure 5 B).

Fig5 Xue F1 large

Figure 5. Composition of the intestinal microbiota from 121 giant pandas, with (A) the dominant genera in all samples and (B) the relative contribution of each individual dominant genera, grouped by age and sampling time (Xue et al. 2015).

In this paper, a comparative analysis between the compositions of the intestinal microbiota of giant panda with other mammals has been made, and it has confirmed that the panda is grouped again with carnivores and is away from herbivores (Figure 6).

Fig6 Xue Fig4

Figure 6. Principal component analysis (PCoA) of microbiota communities from faecal samples of 121 giant pandas (blank forms), compared with other herbivores (green), omnivores (blue) and carnivores (red). The different forms correspond to different works: the circles are from Xue et al. (2015), where this Figure has been obtained.

All in all, the peculiar characteristics of the giant panda microbiota contribute to the extinction danger of this animal. Unlike most other mammals that have evolved their microbiota and digestive anatomies optimizing them for their specific diets, the aberrant coevolution of panda, its microbiota and its particular diet is quite enigmatic. To clarify it and know how to preserve this threatened animal, studies must be continued, combining metagenomics, metatranscriptomics, metaproteomics and meta-metabolomics, in order to know well the structure and metabolism of gut microbiota and its relationship with digestive functions and the nutritional status of the giant panda (Xue et al. 2015).

References

Dierenfield ES, Hintz HF, Robertson JB, Van Soest PJ, Oftedal OT (1982) Utilization of bamboo by the giant panda. J Nutr 112, 636-641

Herron JC, Freeman S (2014) Evolutionary Analysis, 5th ed. Benjamin Cummings

Jin K, Xue C, Wu X, Qian J, Zhu Y et al. (2011) Why Does the Giant Panda Eat Bamboo? A Comparative Analysis of Appetite-Reward-Related Genes among Mammals. PLos One 6, e22602

Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR et al. (2008) Evolution of Mammals and Their Gut Microbes. Science 320, 1647-1651

Li R, Fan W, Tian G, Zhu H, He L et 117 al. (2010) The sequence and de novo assembly of the giant panda genome. Nature 463, 311–317

Nie Y, Zhang Z, Raubenheimer D, Elser JJ, Wei W, Wei F (2015) Obligate herbivory in an ancestrally carnivorous lineage: the giant panda and bamboo from the perspective of nutritional geometry. Functional Ecology 29, 26–34

Rosen M (2015) Pandas’ gut bacteria resemble carnivores. Science News 19/05/2015

Wei G, Lu H, Zhou Z, Xie H, Wang A, Nelson K, Zhao L (2007) The microbial community in the feces of the giant panda (Ailuropoda melanoleuca) as determined by PCR-TGGE profiling and clone library analysis. Microb Ecol 54, 194–202

Wei F, Hu Y, Yan L, Nie Y, Wu Q, Zhang Z (2014) Giant Pandas Are Not an Evolutionary cul-de-sac: Evidence from Multidisciplinary Research. Mol Biol Evol 32, 4-12

Williams CL, Willard S, Kouba A, Sparks D, Holmes W et al. (2013) Dietary shifts affect the gastrointestinal microflora of the giant panda (Ailuropoda melanoleuca). J Anim Physiol Anim Nutr 97, 577-585

Xue Z, Zhang W, Wang L, Hou R, Zhang M et al. (2015) The bamboo-eating giant panda harbors a carnivore-like gut microbiota, with excessive seasonal variations. mBio 6(3), e00022-15

Zhao H, Yang JR, Xu H, Zhang J (2010) Pseudogenization of the Umami Taste Receptor Gene Tas1r1 in the Giant Panda Coincided with its Dietary Switch to Bamboo. Mol Biol Evol 27(12), 2669–2673

Zhu LF, Wu Q, Dai JY, Zhang SN, Wei FW (2011) Evidence of cellulose metabolism by the giant panda gut microbiome. Proc Natl Acad Sci USA 108, 17714–17719.

We have good clostridia in the gut and some of them prevent allergies

21st March 2015

Clostridia: who are they ?

The clostridia or Clostridiales, with Clostridium and other related genera, are Gram-positive sporulating bacteria. They are obligate anaerobes, and belong to the taxonomic phylum Firmicutes. This phylum includes clostridia, the aerobic sporulating Bacillales (Bacillus, Listeria, Staphylococcus and others) and also the anaerobic aero-tolerant Lactobacillales (id est, lactic acid bacteria: Lactobacillus, Leuconostoc, Oenococcus, Pediococcus, Lactococcus, Streptococcus, etc.). All Firmicutes have regular shapes of rod or coccus, and they are the evolutionary branch of gram-positive bacteria with low G + C content in their DNA. The other branch of evolutionary bacteria are gram-positive Actinobacteria, of high G + C and irregular shapes, which include Streptomyces, Corynebacterium, Propionibacterium, and Bifidobacterium, among others.

 

flora_cover

 

Being anaerobes, the clostridia have a fermentative metabolism of both carbohydrates and amino acids, being primarily responsible for the anaerobic decomposition of proteins, known as putrefaction. They can live in many different habitats, but especially in soil and on decaying plant and animal material. As we will see below, they are also part of the human intestinal microbiota and of other vertebrates.

The best known clostridia are the bad ones (Figure 1): a) C. botulinum, which produces botulin, the botulism toxin, although nowadays has medical and cosmetic applications (Botox); b) C. perfringens, the agent of gangrene; c) C. tetani, which causes tetanus; and d) C. difficile, which is the cause of hospital diarrhea and some postantibiotics colitis.

 

clostridium_bacteria

Figure 1. The four more pathogen species of Clostridium. Image from http://www.tabletsmanual.com/wiki/read/botulism

 

Clostridia in gut microbiota

As I mentioned in a previous post (Bacteria in the gut …..) of this blog, we have a complex ecosystem in our gastrointestinal tract, and diverse depending on each person and age, with a total of 1014 microorganisms. Most of these are bacteria, besides some archaea methanogens (0.1%) and some eukaryotic (yeasts and filamentous fungi). When classical microbiological methods were carried out from samples of colon, isolates from some 400 microbial species were obtained, belonging especially to proteobacteria (including Enterobacteriaceae, such as E. coli), Firmicutes as Lactobacillus and some Clostridium, some Actinobacteria as Bifidobacterium, and also some Bacteroides. Among all these isolates, some have been recognized with positive effect on health and are used as probiotics, such as Lactobacillus and Bifidobacterium, which are considered GRAS (Generally Recognized As Safe).

But 10 years ago culture-independent molecular tools began to be used, by sequencing of ribosomal RNA genes, and they have revealed many more gut microorganisms, around 1000 species. As shown in Figure 2, taken from the good review of Rajilic-Stojanovic et al (2007), there are clearly two groups that have many more representatives than thought before: Bacteroides and Clostridiales.

 

Rajilic 2007 Fig 1

Figure 2. Phylogenetic tree based on 16S rRNA gene sequences of various phylotypes found in the human gastrointestinal tract. The proportion of cultured or uncultured phylotypes for each group is represented by the colour from white (cultured) passing through grey to black (uncultured). For each phylogenetic group the number of different phylotypes is indicated (Rajilic-Stojanovic et al 2007)

 

In more recent studies related to diet such as Walker et al (2011) — a work done with faecal samples from volunteers –, population numbers of the various groups were estimated by quantitative PCR of 16S rRNA gene. The largest groups, with 30% each, were Bacteroides and clostridia. Among Clostridiales were included: Faecalibacterium prausnitzii (11%), Eubacterium rectale (7%) and Ruminococcus (6%). As we see the clostridial group includes many different genera besides the known Clostridium.

In fact, if we consider the population of each species present in the human gastrointestinal tract, the most abundant seems to be a clostridial: F. prausnitzii (Duncan et al 2013).

 

Benefits of some clostridia

These last years it has been discovered that clostridial genera of Faecalibacterium, Eubacterium, Roseburia and Anaerostipes (Duncan et al 2013) are those which contribute most to the production of short chain fatty acids (SCFA) in the colon. Clostridia ferment dietary carbohydrate that escape digestion producing SCFA, mainly acetate, propionate and butyrate, which are found in the stool (50-100 mM) and are absorbed in the intestine. Acetate is metabolized primarily by the peripheral tissues, propionate is gluconeogenic, and butyrate is the main energy source for the colonic epithelium. The SCFA become in total 10% of the energy obtained by the human host. Some of these clostridia as Eubacterium and Anaerostipes also use as a substrate the lactate produced by other bacteria such as Bifidobacterium and lactic acid bacteria, producing finally also the SCFA (Tiihonen et al 2010).

 

Clostridia of microbiota protect us against food allergen sensitization

This is the last found positive aspect of clostridia microbiota, that Stefka et al (2014) have shown in a recent excellent work. In administering allergens (“Ara h”) of peanut (Arachis hypogaea) to mice that had been treated with antibiotics or to mice without microbiota (Germ-free, sterile environment bred), these authors observed that there was a systemic allergic hyper reactivity with induction of specific immunoglobulins, id est., a sensitization.

In mice treated with antibiotics they observed a significant reduction in the number of bacterial microbiota (analysing the 16S rRNA gene) in the ileum and faeces, and also biodiversity was altered, so that the predominant Bacteroides and clostridia in normal conditions almost disappeared and instead lactobacilli were increased.

To view the role of these predominant groups in the microbiota, Stefka et al. colonized with Bacteroides and clostridia the gut of mice previously absent of microbiota. These animals are known as gnotobiotic, meaning animals where it is known exactly which types of microorganisms contain.

In this way, Stefka et al. have shown that selective colonization of gnotobiotic mice with clostridia confers protection against peanut allergens, which does not happen with Bacteroides. For colonization with clostridia, the authors used a spore suspension extracted from faecal samples of healthy mice and confirmed that the gene sequences of the extract corresponded to clostridial species.

So in effect, the mice colonized with clostridia had lower levels of allergen in the blood serum (Figure 3), had a lower content of immunoglobulins, there was no caecum inflammation, and body temperature was maintained. The mice treated with antibiotics which had presented the hyper allergic reaction when administered with antigens, also had a lower reaction when they were colonized with clostridia.

 

fig 4 skefta

Figure 3. Levels of “Ara h” peanut allergen in serum after ingestion of peanuts in mice without microbiota (Germ-free), colonized with Bacteroides (B. uniformis) and colonized with clostridia. From Stefka et al (2014).

 

In addition, in this work, Stefka et al. have conducted a transcriptomic analysis with microarrays of the intestinal epithelium cells of mice and they have found that the genes producing the cytokine IL-22 are induced in animals colonized with clostridia, and that this cytokine reduces the allergen uptake by the epithelium and thus prevents its entry into the systemic circulation, contributing to the protection against hypersensitivity. All these mechanisms, reviewed by Cao et al (2014), can be seen in the diagram of Figure 4.

In conclusion, this study opens new perspectives to prevent food allergies by modulating the composition of the intestinal microbiota. So, adding these anti-inflammatory qualities to the production of butyrate and other SCFA, and the lactate consumption, we must start thinking about the use of clostridia for candidates as probiotics, in addition to the known Lactobacillus and Bifidobacterium.

 

fig 4 Cao b

Figure 4. Induction of clostridia on cytokine production by epithelial cells of the intestine, as well as the production of short chain fatty acids (SCFA) by clostridia (Cao et al 2014).

 

References

Cao S, Feehley TJ, Nagler CR (2014) The role of commensal bacteria in the regulation of sensitization to food allergens. FEBS Lett 588, 4258-4266

Duncan SH, Flint HJ (2013) Probiotics and prebiotics and health in ageing populations. Maturitas 75, 44-50

Rajilic-Stojanovic M, Smidt H, de Vos WM (2007) Diversity of the human gastrointestinal tract microbiota revisited. Environ Microbiol 9, 2125-2136

Rosen M (2014) Gut bacteria may prevent food allergies. Science News 186, 7, 4 oct 2014

Russell SL, et al. (2012) Early life antibiotic-driven changes in microbiota enhance 
susceptibility to allergic asthma. EMBO Rep 13(5):440–447

Stefka AT et al (2014) Commensal bacteria protect against food allergen sensitization. Proc Nat Acad Sci 111, 13145-13150

Tiihonen K, Ouwehand AC, Rautonen N (2010) Human intestinal microbiota and healthy aging. Ageing Research Reviews 9:107–16

Walker AW et al (2011) Dominant and diet-responsive groups of bacteria within the human colonic microbiota. The ISME J 5, 220-230

 

 

Surprising: bacteria of human acne passed to the vineyard !!

It is really surprising, but it seems so: Italian and Austrian researchers have published a paper (Campisano et al. 2014) which shows that the bacterial species Propionibacterium acnes, related to human acne, can be found as obligate endophytes in bark tissues of Vitis vinifera, the grapevine.

Some bacterial pathogens of humans, such as Salmonella, are able to colonize plant tissues but temporarily and opportunistically (Tyler & Triplett 2008). In fact, there is a temporary mutual benefit between plants and bacteria, so some of these enterobacteria pathogenic to plants do not live endophytically and can be beneficial for them. These pathogens to humans, in its life cycle, use plants as alternative hosts to survive the environment, passing to the plants through contaminated irrigation water. Therefore, some bacteria are often temporary endophyte guests of plants.

But on the other hand, there are relatively rare cases of bacteria changing the host and adapting to the new host, finally being endophytes. This horizontal transfer happens mostly between evolutionarily close hosts, such as symbiotic bacteria of aphids (insects), which has proven to transfer to other species of aphids (Russell & Moran 2005). It has also been suggested the horizontal transfer of beneficial lactic acid bacteria (Lactobacillus reuteri) in the intestinal tract of vertebrates, since strains of this L. reuteri are similar in several species of mammals and birds.

Well, going beyond, the work of Campisano et al. subject of this review, concludes that bacteria associated with human acne should have passed on the vine, that is, the bacteria would have made a horizontal transfer interregnum, from plants to mammals.

 

Propionibacterium acnes type Zappae

Acne, as you know, is a common human skin disease, consisting of an excess secretion of the pilosebaceous glands caused by hormonal changes, especially teenagers. The glands become inflamed, the pores obstructed and scarring appears. The microorganism associated with these infections is the opportunistic commensal bacterium P. acnes, a gram-positive anaerobic aero tolerant rod,  which fed fatty acids produced by the glands.

fig1 Akne-jugend

Young with acne (Wikimedia, public)

 

fig2

Propionibacterium acnes at the scanning electron microscope (left) and dyed with violet crystal (right). From Abate ME (2013) Student Pulse 5, 9, 1-4.

 

Interestingly, other species of the same genus Propionibacterium well known in microbial biotechnology industry are used for the production of propionic acid, vitamin B12, and the Swiss cheeses Gruyere or Emmental.

Campisano et al. have made a study of the vineyard endomicrobioma by the sequencing technique (Roche 454) amplifying the V5-V9 hyper variable region of the bacterial 16S rDNA present in the tissues of vine. In 54 of the 60 plants analyzed, between 0.5% and 5% of the found sequences correspond to the species Propionibacterium acnes. This observation has been confirmed by fluorescent in situ hybridization (FISH) with fluorochromes and specific probes of P. acnes.

fig 3 FISH P acnes escorça vinya

Location of P. acnes (fluorescent blue spots) in the bark of a vine stem, seen with FISH microscopy with specific probes for this bacterium (Campisano et al 2004).

 

The authors of this work proposed for this bacterium the name of P. acnes Zappae, in memory of the eccentric musician and composer Frank Zappa, to emphasize the unexpected and unconventional habitat of this type of P. acnes.

fig 4 Frank Zappa

 Frank Zappa (1940-1993), the eccentric and satiric singer, musician and composer. Photo: Frank Zappa reviews.

 

And how did this human bacteria arrive into the vineyard?

To solve this riddle, Campisano et al. have taken the 16S rDNA sequences and from other genes (recA and tly) from these strains of P. acnes Zappae found in vine and have compared with those P. acnes of human origin in databases. Comparing phylogenies and clusters deducted from them, these researchers have concluded that P. a. Zappae has diversified evolutionarily recently. Studying in detail the recA gene sequences of P. a. Zappae, and taking into account the likely mutation rate and generation time (about 5 hours), they deduce that the diversification from other P. acnes occurred 6000-7000 years ago.

This date coincides with the known domestication of the vine by humans, which is believed to have occurred about 7000 years ago in the southern Caucasus, between the Black Sea and the Caspian Sea, the area of modern Turkey, Georgia, Armenia and Iran (Berkowitz 1996). The vineyard has its origins in a wild subspecies of Vitis that survived the Ice Age and was domesticated. This plant came out to three subspecies, and one of them, Vitis vinifera pontica, spread in the mentioned area and further south in Mesopotamia and then to all south Europe thanks to the Phoenicians.

Therefore, the conclusion is that P. acnes Zappae originated from human P. acnes 7000 years ago, by contact of human hands with grapes and other parts of the vineyard during the harvest and carrying them. As the authors say, this case would be the first evidence of horizontal transfer interregnum, from humans to plants, of a obligate symbiotic bacterium. This also makes more remarkable the adaptability of bacteria. Their ability to exploit new habitats can have unforeseen impacts on the evolution of host-symbiont relationship or even host-pathogen.

fig 5 m_so_america_hands_close

Harvesting by hand in Chile (Fine Wine and Good Spirits)

 

References

Berkowitz M (1996) World’s earliest wine. Archaeology 49, 5, Sept./Oct.

Campisano Aet al. (2014) Interkingdom transfer of the acne-causing agent, Propionibacterium acnes, from human to grapevine. Mol Biol Evol 31, 1059-1065.

Gruber K (4 march 2014) How grapevines got acne bacteria. Nature News 4 march 2014.

Russell JA, NA Moran (2005) Horizontal transfer of bacterial symbionts: heritability and fitness effects in a novel aphid host. Appl Environ Microbiol 71, 7987-7994.

Tyler HL, EW Triplett (2008) Plants as a habitat for beneficial and/or human pathogenic bacteria. Ann Rev Phytopathol 46, 53-73.

Wikipedia, of course: Propionibacterium acnes, Vitis, …

Walter J, RA Britton, S Roos (2011) PNAS 108, 4645-4652.

 

 

 

 

No sé ni cómo te atreves

Fotografía y esas pequeñas cosas de cada día

Pols d'estels

El bloc d'Enric Marco

Life Secrets

For my students

Horitzons llunyans

Mirades distants

#4wine

Los vinos son pequeñas historias dentro de una botella y nosotras queremos contarte las nuestras

Vi·moments·persones

Un maridatge a tres bandes

SciLogs: Artificial, naturalmente

Interesting things on life sciences and on nature, and other things not so "bio"

microBIO

Interesting things on life sciences and on nature, and other things not so "bio"

RealClimate

Interesting things on life sciences and on nature, and other things not so "bio"

Quèquicom

Interesting things on life sciences and on nature, and other things not so "bio"

Dionís de viatge a Ítaca

Experiències enoturístiques

%d bloggers like this: